1. 20.4 otto案例介绍 -- Otto Group Product Classification Challenge【xgboost实现】

1.1. 1 背景介绍

奥托集团是世界上最大的电子商务公司之一,在20多个国家设有子公司。该公司每天都在世界各地销售数百万种产品,所以对其产品根据性能合理的分类非常重要。

不过,在实际工作中,工作人员发现,许多相同的产品得到了不同的分类。本案例要求,你对奥拓集团的产品进行正确的分分类。尽可能的提供分类的准确性。

链接:https://www.kaggle.com/c/otto-group-product-classification-challenge/overview

2nd iteration


1.2. 2 思路分析

  • 1.数据获取
  • 2.数据基本处理
    • 2.1 截取部分数据
    • 2.2 把标签纸转换为数字
    • 2.3 分割数据(使用StratifiedShuffleSplit)
    • 2.4 数据标准化
    • 2.5 数据pca降维
  • 3.模型训练
    • 3.1 基本模型训练
    • 3.2 模型调优
      • 3.2.1 调优参数:
        • n_estimator,
        • max_depth,
        • min_child_weights,
        • subsamples,
        • consample_bytrees,
        • etas
      • 3.2.2 确定最后最优参数

1.3. 3 部分代码实现

  • 2.数据基本处理
  • 2.1 截取部分数据
  • 2.2 把标签值转换为数字
  • 2.3 分割数据(使用StratifiedShuffleSplit)
# 使用StratifiedShuffleSplit对数据集进行分割
from sklearn.model_selection import StratifiedShuffleSplit

sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=0)
for train_index, test_index in sss.split(X_resampled.values, y_resampled):
    print(len(train_index))
    print(len(test_index))

    x_train = X_resampled.values[train_index]
    x_val = X_resampled.values[test_index]

    y_train = y_resampled[train_index]
    y_val = y_resampled[test_index]
# 分割数据图形可视化
import seaborn as sns

sns.countplot(y_val)

plt.show()
  • 2.4 数据标准化
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaler.fit(x_train)

x_train_scaled = scaler.transform(x_train)
x_val_scaled = scaler.transform(x_val)
  • 2.5 数据pca降维
print(x_train_scaled.shape)
# (13888, 93)

from sklearn.decomposition import PCA

pca = PCA(n_components=0.9)
x_train_pca = pca.fit_transform(x_train_scaled)
x_val_pca = pca.transform(x_val_scaled)

print(x_train_pca.shape, x_val_pca.shape)
(13888, 65) (3473, 65)

从上面输出的数据可以看出,只选择65个元素,就可以表达出特征中90%的信息

# 降维数据可视化
plt.plot(np.cumsum(pca.explained_variance_ratio_))

plt.xlabel("元素数量")
plt.ylabel("可表达信息的百分占比")

plt.show()

image-20200211092529327


  • 3.模型训练
  • 3.1 基本模型训练
from xgboost import XGBClassifier

xgb = XGBClassifier()
xgb.fit(x_train_pca, y_train)

# 改变预测值的输出模式,让输出结果为百分占比,降低logloss值
y_pre_proba = xgb.predict_proba(x_val_pca)
# logloss进行模型评估
from sklearn.metrics import log_loss
log_loss(y_val, y_pre_proba, eps=1e-15, normalize=True)

xgb.get_params
  • 3.2 模型调优

  • 3.2.1 调优参数:

  • 1) n_estimator
scores_ne = []
n_estimators = [100,200,400,450,500,550,600,700]

for nes in n_estimators:
    print("n_estimators:", nes)
    xgb = XGBClassifier(max_depth=3, 
                        learning_rate=0.1, 
                        n_estimators=nes, 
                        objective="multi:softprob", 
                        n_jobs=-1, 
                        nthread=4, 
                        min_child_weight=1, 
                        subsample=1, 
                        colsample_bytree=1,
                        seed=42)

    xgb.fit(x_train_pca, y_train)
    y_pre = xgb.predict_proba(x_val_pca)
    score = log_loss(y_val, y_pre)
    scores_ne.append(score)
    print("测试数据的logloss值为:{}".format(score))
# 数据变化可视化
plt.plot(n_estimators, scores_ne, "o-")

plt.ylabel("log_loss")
plt.xlabel("n_estimators")
print("n_estimators的最优值为:{}".format(n_estimators[np.argmin(scores_ne)]))

image-20200211092901936

  • 2)max_depth
scores_md = []
max_depths = [1,3,5,6,7]

for md in max_depths:  # 修改
    xgb = XGBClassifier(max_depth=md, # 修改
                        learning_rate=0.1, 
                        n_estimators=n_estimators[np.argmin(scores_ne)],   # 修改 
                        objective="multi:softprob", 
                        n_jobs=-1, 
                        nthread=4, 
                        min_child_weight=1, 
                        subsample=1, 
                        colsample_bytree=1,
                        seed=42)

    xgb.fit(x_train_pca, y_train)
    y_pre = xgb.predict_proba(x_val_pca)
    score = log_loss(y_val, y_pre)
    scores_md.append(score)  # 修改
    print("测试数据的logloss值为:{}".format(log_loss(y_val, y_pre)))
# 数据变化可视化
plt.plot(max_depths, scores_md, "o-")  # 修改

plt.ylabel("log_loss")
plt.xlabel("max_depths")  # 修改
print("max_depths的最优值为:{}".format(max_depths[np.argmin(scores_md)]))  # 修改
  • 3) min_child_weights,
    • 依据上面模式进行调整
  • 4) subsamples,
  • 5) consample_bytrees,
  • 6) etas
  • 3.2.2 确定最后最优参数
xgb = XGBClassifier(learning_rate =0.1, 
                    n_estimators=550, 
                    max_depth=3, 
                    min_child_weight=3, 
                    subsample=0.7, 
                    colsample_bytree=0.7, 
                    nthread=4, 
                    seed=42, 
                    objective='multi:softprob')
xgb.fit(x_train_scaled, y_train)

y_pre = xgb.predict_proba(x_val_scaled)

print("测试数据的logloss值为 : {}".format(log_loss(y_val, y_pre, eps=1e-15, normalize=True)))
Copyright © MISIN 2022 | 豫ICP备2023040351号-1 all right reserved,powered by Gitbook该文件修订时间: 2024-01-12 07:58:59

results matching ""

    No results matching ""